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Abstract 
Inflammation and the oxidative stress are two main notorious driving forces behind the disease progression, 
deterioration and eventually the death of the individuals concerned. When these two aggravating factors have been 
effectively addressed, then the disorders affecting people can be under control and relief for the treating clinician. 
The patients can experience an improvement in health-related quality of life, or better total remission. This review 
evaluates the relation between oxidative stress in critically ill patients, vitamin C intake as an antioxidant and severity 
of illness. It also highlights the implications of these two processes in major disease areas, such as cancer, intensive 
care, sepsis, cardiology, rheumatology, and the damaging outcomes of the imbalance between the production of 
ROS and antioxidants. 
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1. Background 
In a living system, Professor Moses Gomberg from the 

University of Michigan, USA first postulated the 

existence of free radicals in 1900, including 

triphenylmethyl (Ph3C*) radical.1 In another 

development, Prof. Rebeca Gerschman came up in 1954 

with the cause of oxygen toxicity, and that this chemical 

element can form free radicals.2 

Oxidative stress comes from the imbalance between free 

radicals and antioxidants in the body, potentially leading 

to cell and tissue damage.3 It is a natural occurrence and 

affects the aging process. There are lots scientific 

evidence suggesting that long-term oxidative stress has a 

tremendous impact on many chronic conditions, such as 

cancer, diabetes, rheumatoid arthritis, heart disease, 

Alzheimer and Parkinson’s disease to mention but a 

few.4-6 

 

Inflammation is a crucial response to the human immune 

system, but is an evolutionary conservative process 

involving the activation of immune and non-immune 

cells that protect the host from bacteria, viruses, toxins 

and infections, by eliminating pathogens and enhancing 

tissue repair and recovery.7 The intensity and degree of 

inflammatory response, whether systemic or localized, 

metabolic and neuroendocrine changes can occur for 

conservation of metabolic energy and allocation of 

nutrients to the activated immune system concerned.8 

Though there are common mechanisms between acute 

and chronic systemic inflammation, the acute condition 

looks different from the systemic one. Typically, the 

acute response is triggered during infection through 

interactions between pattern recognition receptors 

expressed on innate immune cells and conserved 

structures arising from evolution on pathogens, known 

as pathogen-associated molecular patterns (PAMPs). 

https://doi.org/10.35975/apic.v26i5.1993
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Activation of the acute inflammatory response can also 

be linked to damage-associated molecular patterns 

(DAMPs), which are derived relational responding to 

physical and chemical stimuli, or toxic and metabolic 

alterations – termed “sterile” agents during the course of 

cellular stress or damage.9 The systemic chronic 

inflammation (SCI) usually increases with age, meaning 

that older individuals have higher levels of cytokines, 

chemokines and acute phase proteins in circulation, and 

also greater expression of genes linked to 

inflammation.10, 11 

It has been established that circumstances in infancy can 

immensely impact metabolic and immune response later 

in life, which invariably step up to SCI in adulthood.12 

Several human cancers are associated with chronic 

inflammation induced by biological, chemical, and 

physical risk factors. Through epidemiological and 

experimental data, an association between inflammation 

and cancer has been confirmed by anti-inflammatory 

therapies, showing efficacy in prevention and 

treatment.13 There is a large variety of sources where 

inflammation comes from; it comprises microbial and 

viral infections, exposure to allergens, radiation, toxic 

chemicals, autoimmune and chronic diseases, 

consumption of alcohol, tobacco use, and a high-calorie 

diet.14 Generally, the longer the duration of 

inflammation, the higher is the risk of cancer.15 There is 

recruitment of mast cells and leucocytes to the site of 

DNA damage during inflammation, leading to a 

“respiratory burst” due to an enhanced uptake of oxygen, 

thus a local increased release and accumulation of ROS. 

Considerable evidence recently has shown that ROS are 

involved in chronic inflammation and cancer. In addition 

to induce genomic instability, ROS can specifically 

activate some signaling pathways and influence the 

development of tumors via regulation of cellular 

proliferation, angiogenesis, and metastasis.16 Cancer 

growth is a complicated process, which includes cellular 

and molecular changes mediated by different 

endogenous and exogenous stimuli. It has been 

expressed that oxidative DNA damage is a major feature 

of carcinogenesis.17 

Oxidative stress caused by the imbalance between 

production of free radicals/ROS and antioxidant defence 

systems can activate different transcription factors, and 

further affecting their transcriptional pathways.18 It also 

plays a crucial role in the occurrence, development, 

treatment and prognosis of leukemia.19 Since there are 

still many limitations for conventionally treating it and 

other forms of cancer, new therapeutic approaches using 

antioxidants such as vitamin C infusions at a high dose 

have to be explored and added as a standard protocol in 

clinical practice.19 Antioxidants are considered to be the 

solution to these problems – substances that neutralize 

free radicals. 

A high-quality and approved high-dose intravenous 

vitamin C (7.5 g), otherwise known as Pascorbin® (the 

only therapy that received approval in Europe), a brand 

name that can provide a lasting solution to millions of 

patients around the world where inflammation and 

oxidative stress have rendered treatments ineffective or 

simply failed via conventional means.20 Leading 

clinicians’ attitude must change to embrace this form of 

therapy. High-dose intravenous vitamin C is cost-

effective, well tolerated, no side effects, and indicated 

for severe infections involving oncology, intensive care, 

sepsis in rheumatoid arthritis (RA) and COVID-19.21 

Historically, physicians’ writing in Egypt from 3000 BC 

described patients who developed sepsis complications 

that have originated from traumatic wounds. The reports 

showed their understanding of sepsis refers to a systemic 

process with links to timing and systemic inflammation. 

With Hippocrates (460–370 BC), it was known in 

Ancient Greece as a condition causing “rotting” of the 

body.22 The Persian philosopher and physician Ibn Sina 

[Avicenna] (980–1037 AD) also outlined sepsis for the 

first time as a “decay” of blood and tissues accompanied 

by fever.23 In contrast to ancient Egyptian and Greek 

colleagues, the modern-day physicians are provided with 

armamentarium of antibiotics, surgical procedures, and 

physiological devices in support delivered via intensive 

care that makes sepsis treatable if diagnosed in time.24 

However, there are an estimated 49 million cases of 

sepsis on a global scale and 11 million sepsis-related 

deaths annually. The most common cause of both in-

hospital death and unplanned readmission among 

patients still remains associated with sepsis-related 

cases.25, 26 

For more than two years, the fight and dilemma in 

association with COVID-19 pandemic have paralyzed 

the global economy and jeopardized the capabilities of 

most healthcare systems. The capacity of intensive care 

units (ICUs) and limited resources have resulted in 

unprecedented bottlenecks for the management and 

containment of COVID-19 as well as millions of lives 

lost. Given the tantalizing circumstances that prevail 

with COVID-19, new treatment strategies including 

high-dose intravenous vitamin C are of crucial 

importance to be added to national protocols to mitigate 

against the notoriety of inflammation and oxidative 

stress in disease progression, deterioration, impaired 

quality of life and death among affected individuals.21 

2. Interconnection of chronic 
inflammation and oxidative 
stress in oncology 
Chronic inflammation and oxidative stress are 

interconnected pathological processes, which can result  
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in cancer initiation and progression.27 The increasing 

level of oxidative and inflammatory damage can lead to 

the severity of the cancer and corresponding tumor 

spread. On a global scale, cancer is the second cause of 

death after cardiovascular disorders according to the 

estimates of World Health Organization.28 In 2020, the 

International Agency for Research on Cancer reported 

19.3 million new cases and about 10 million cancer-

related deaths associated with cancer worldwide. The 

prognosis by 2040 is that cancer cases in the world can 

rise to more than 28 million, which is an indication for 

clinicians to rather look for new treatment strategies than 

relying fully on conventional ones, particularly where 

those approaches failed or ineffective.29 

The major roles of oxidative stress and chronic 

inflammation have been confirmed from modern data, 

ranging from metastasis initiation to therapeutic 

resistance.30 Disruption of the inherent antioxidant 

defence system caused by free radical overproduction 

could result in oxidative damage to various 

macromolecules, and in turn triggers genetic mutations 

that affect gene expression as well as modification of 

transcription factors.5 Furthermore, the production of 

pro-inflammatory cytokines, angiogenesis leading to the 

progression of tumors in bladder cancer patients could 

be catalyzed through excessive circulating oxygen 

species.31 

3. Impact of inflammation and 
oxidative stress among 
patients including COVID-19 
in ICU 
Among critically ill trauma patients, there are numerous 

cellular processes involved such as lipid function, 

protein synthesis and inflammatory response, mainly due 

to increasing levels of oxidative stress.5 A significant  

 

 

correlation exists between the fact of decreasing these 

levels by antioxidant substances, and better prognosis 

and outcomes in patients, including the improvement of 

coagulation, lipid profile, protein and inflammatory 

status.32 

Reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) are prevalent among severely ill patients. 

Under normal circumstances, ROS/RNS are constantly 

being formed, but the critical condition can increase 

significantly their production. During critical illness, the 

pro-oxidant antioxidant balance is significantly 

functional because of their involvement in the 

pathogenesis of multiple organ failure. There is 

worsening oxidative stress associated with seriously ill 

patients admitted to ICU. Intake of antioxidant vitamins 

below 66% recommended dietary allowance (RDA) is 

linked to greater exacerbation of oxidative stress than 

those above. A reduced risk exists for worsening 

oxidative stress by 94%, with an antioxidant vitamin 

intake ranging from 66% to 100% as RDA.33 

Since COVID-19 outbreak, innumerable efforts are 

being made to understand the molecular mechanisms 

underlying the coronavirus disease 2019. The close 

relationship between this syndrome and sepsis has been 

highlighted, which indicates that most deaths in ICU can 

be because of SARS-CoV-2 infection triggering sepsis.34 

Severe COVID-19 patients exhibit some common 

features with sepsis, such as inflammation, elevated 

levels of systemic pro-inflammatory cytokines, immune 

dysregulation and microthrombosis.35 In determining the 

severity of COVID-19, interconnection mechanisms 

such as inflammation and oxidative stress look 

extremely important. Severe COVID-19 illness has been 

affiliated with dysregulated innate immune response, an 

increased neutrophil-to-lymphocyte ratio level, and 

lymphopenia as well as cytokine storm.36, 37 

In the COVID-19 pandemic, the two critical processes 

involve assessing patients’ needs in intensive care and  

Table 1: Biomarkers associated with oxidative stress and cancer pathology [Modified from Wigner et al. 
(2021); Neganova et al. (2021)].30, 83 

Gene Enzyme Gene Location 

CAT Catalase 11p13 

COX-2 Prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2) 1q31.1 

GPX3 Glutathione peroxidase 3 5q33.1 

iNOS Inducible nitric oxide synthase 17q11.2 

NOX4 Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4  11q14.3 

PON1 Serum paraoxonase/arylesterase 1 7q21.3 

PON2 Serum paraoxonase/arylesterase 2 7q21.3 

SOD1 Superoxide dismutase 1 (Cu-Zn) 21q22.11 

SOD2 Superoxide dismutase 2/Manganese-dependent superoxide dismutase (MnSOD) 6q25 
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predicting disease progression during their stay in the 

ICU. The most crucial point in the clinical trajectory for 

COVID-19 is to figure out patient deterioration and 

emergence of the need for ICU admission.38 Though the 

criteria for the last can vary depending on the severity of 

infection and resources at disposal, the major ones are 

hypoxia (oxygen saturation <90% even with a support of 

6 l/minute), hemodynamic instability needing vasoactive 

agents, presence of acute respiratory distress syndrome 

(ARDS), and necessity for mechanical ventilation.39-41 

Besides these conditions, some laboratory parameters  

 

have also been considered, such as increased 

inflammatory or coagulation markers (D-dimer level 

> 1 ug/ml, elevated fibrin degradation products, 

prolonged activated partial thromboplastin time and 

prothrombin time, worsening lymphopenia, neutrophil 

count, high levels of troponin, alanine aminotransferase, 

aspartate aminotransferase, and lactate 

dehydrogenase.42-44 

Markers of ROS generation and antioxidant activity have 

been associated with many critical illnesses. Severely ill 

patients can have increased levels of ROS as well as 

Table 2: Criteria for ICU admission and classification of COVID-19 (Modified from Daskaya et al. [2021])84 

Criteria Mild Common Severe Critically 
severe 

 Mild clinical 
manifestations,  

no imaging 
performed 

Fever,  

respiratory 
symptoms, 
pneumonia  

on X-ray or  

CT 

a) Respiratory 
distress, RR ≥ 30 
breaths/min 

b) Oxygen 
saturation ≤ 93% at 
rest 

c) Arterial partial 
pressure of oxygen 
(PaO2)/fraction of 
inspired O2 

(FiO2) 
≤ 300 mmHg, 
1 mmHg = 
0.133 KPa 

a) 
Respiratory 

failure 

b) Shock 

c) Combined 

with organ 

failure, 

need for ICU 

treatment 

Oxygen saturation < 93% despite nasal 
oxygen support of 5 l/min and above 

    

Partial oxygen pressure < 60 mmHg despite 
nasal oxygen support of 5 l/min and above 

    

PaO2/FiO2 < 300     

Bilateral/multilobar infiltration on chest 
radiography or computed tomography (CT) 
with clinical deterioration or increase in 
infiltration compared with previous imaging 

    

Hypotension (systolic blood pressure < 
90 mmHg, drop in usual systolic blood 
pressure > 40 mmHg, mean arterial 
pressure < 65 mmHg) or vasopressor 
requirement 

    

Signs of hypoperfusion in the skin, lactate > 
2 mmol/L, increase in SOFA score (> 2) 

    

Elevation in cardiac enzymes (troponin) or 
arrhythmia 

    

Kidney and liver abnormalities, 
thrombocytopenia 

    

Development of MAS     

ICU: Intensive care unit; PaO2/FiO2: partial pressure of arterial oxygen/fraction of inspired oxygen; SOFA: 
Sequential Organ Failure Assessment; MAS: macrophage activation syndrome 
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decreased antioxidant defenses.33 In seriously ill 

patients, long-term mortality is of vital importance, and 

one of the influencing factors is the frailty of the patient 

concerned. According to Ayala et al. (2021),45 

incrementing ROS levels, especially the superoxide 

anion in the first 24 h of ICU admission is a significant 

indicator of long-term mortality in non-obese elderly 

people without morbidity, which means that oxidative 

stress is the hallmark of the aging process. The main 

feature of frailty is oxidative stress, which is the brain 

behind the promotion of inflammation, particularly the 

increased CRP and IL-6 among these patients.10 

As acute inflammation associated with critical illness is 

not totally resolved in some ICU survivors, persistent 

inflammation can be responsible for driving frailty-

related outcome as disability and mortality, and the 

cornerstone of this inflammatory state can be basal 

oxidative stress ratio in affected individuals.46 

4. Vascular inflammation and 
oxidative stress in 
cardiovascular disorders 
According to the latest data from the Global Burden of 

Disease Study, cardiovascular conditions are the leading 

cause of death and reducing the quality of life 

worldwide.47 Both inflammation and oxidative stress are 

important players in chronic cardiovascular diseases.48 

Due to the near-ubiquitous presence of oxidative stress 

in this condition, a major association has been forged 

between it and the cardiovascular prognosis. 

Inflammatory processes have a clear connection with 

vascular dysfunction and cardiovascular diseases, such 

as arterial hypertension, hypercholesterolemia, and 

coronary artery disease.49 Both inflammation and 

oxidative stress are enhanced in chronic heart failure.50 

Mitochondrial dysfunction, a strong impairment in heart 

failure and a leading cause of oxidative stress, which in 

turn exerts damaging impact on cellular components 

with mitochondria inclusive, thus generating a chain 

reaction.51 

Oxidative stress and inflammation have drawn some 

attention recently as significant pathophysiological 

factors of heart failure and potential influencing 

contributors to this syndrome progression.52 Both are 

closely connected with each other, whether in the acute 

phase after myocardial infarction or during chronic 

cardiac remodeling.53 In dysfunctional cardiomyocytes, 

the increased levels of ROS get to severe oxidative DNA 

damage, and consequently stimulate nuclear enzyme 

poly(ADP-ribose) polymerase 1 (PARP-1).54 The 

expression of inflammatory mediators, such as TNFα 

and IL-6, does lead to develop a subclinical 

inflammatory state, which invariably contributes to 

cardiac remodeling, and heart failure is the result of 

PARP-1 overactivation, and the impairment of several 

cellular metabolic pathways.55 Overexpression of TNFα 

damages mitochondrial DNA, inhibits antioxidants, and 

alters the functional activities of mitochondrial 

complex III, thereby increasing ROS generation.56 

Based on history, the first proposed biomarker of heart 

failure was CRP, and sub-analysis of the Valsartan Heart 

Failure Trial (Val-HeFT) suggested that high-sensitivity 

CRP (hs-CRP) increasing levels are linked to features of 

more severe heart failure, mortality and corresponding 

morbidity.57 Several elements contribute to the cause of 

oxidative stress in this syndrome, which promotes a local 

subclinical inflammatory response. 

5. Clinical outcomes of high-
dose intravenous vitamin C in 
combatting inflammation and 
oxidative stress 
As it is well established that inflammation and oxidative 

stress can be treated effectively using an antioxidant, 

such as vitamin C infusion at a high dose, it is about time 

this therapy is enshrined in healthcare protocols to put an 

end to the dilemma of ineffective or failure in tackling 

these processes head-on.5 Since we, as humans, lost the 

vitamin C biosynthesis in the course of our evolution 

more than 60 million years ago due to the inactivation of 

an important enzyme, we have no other choice than to 

acquire it from external means unless we can reverse the 

evolutionary trend through technological know-how.58 

High-dose vitamin C (HDVC) is a safe, highly effective 

therapy, which is indispensable from intensive care, 

biochemical and inflammatory reaction kinetic 

viewpoints.59 Mainstream clinicians should embrace this 

treatment, especially where conventional strategies have 

failed or partially effective. If HDVC is given to severely 

ill or patients with chronic conditions as early as possible 

after the injurious event, or before if feasible, it seems 

most effective.60 In the critically ill, short-term use of 

intravenous vitamin C as a resuscitation drug could help 

to intervene at the earliest in the oxidative cascade as to 

optimize both micro- and macrocirculation and reduce 

cellular injury.61 

Administering vitamin C intravenously produces 

substantially higher plasma levels compared with oral 

intake.62 Through intravenous (IV) administration 

straight into the bloodstream, it bypasses all the 

“control” mechanisms, which virtually removes the 

upper limit of achievable plasma concentration.63 

Several pharmacokinetic studies indicate that these 

levels are attained for a longer period of time, some 

suggest up to 12–16 hours.62, 64, 65 
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Many studies have reported favorable results of HDVC 

in critically ill patients.66-68 The major health outcomes 

include reduction in respiratory morbidity and new organ 

failure, less mechanical ventilation for days and shorter 

length of stay in ICU and/or hospital. Because oxidative 

stress is emerging as a critical factor in COVID-19 

physiopathology, antioxidants can be feasible agents as 

co-adjuvant therapy to attenuate its disease severity.69 

The first scientist who experimented with intravenous 

vitamin C was Linus Pauling; he found that it may be a 

great therapeutic tool in the treatment of some chronic 

diseases, especially in supporting those with cancer.70 

The response of cancer cells to IV administration of 

vitamin C is different when compared to the body’s 

normal cells.71 For instance, a malignant cell makes a 

rather rapid and sustained increase in hydrogen peroxide 

in response to vitamin C, resulting in a “rusting effect” 

known as oxidative damage. Normal or healthy cells do 

not react in this way to vitamin C. This phenomenon 

makes intravenous vitamin C (IVC) a unique and 

targeted treatment, unlike any other chemotherapy-like 

medication.72 

Many studies have demonstrated evidence of a good 

safety profile for IVC therapy with relatively few 

adverse events.73, 74 Vitamin C treatment in amounts of 

at least 10 g/day has been shown to improve quality of 

life, reduce pain and increase life expectancy, potentially 

survival time by several years, in a number of cases and 

clinical studies.75 It is vital that each IV therapy is 

tailored to the needs of the individual patient and 

particular situation. Protocols can be adjusted based on 

how she/he is feeling, the type of chronic disease or 

cancer, conventional treatments currently being 

received, and what is financially feasible over time as 

well. 

The therapy with high-dose vitamin C given by IV is 

highly beneficial and effective for those individuals 

under a greater than usual stress level, experience 

symptoms of extreme fatigue, require a boost to their 

immune system to fight acute and/or chronic viral and/or 

bacterial infections, who have damaged the skin because 

of the sun and surgery, and to help in mitigating side 

effects associated with chemo- and radiation therapy.76 

6. Conclusion 
As a rule, all critically ill patients, the cellular processes 

will trigger the inflammation response and increase the 

oxidative stress. There is a strong association between 

inflammation and oxidative stress, which is evidently 

seen even including COVID-19.69 Both are significant 

risk factors for cancer, intensive care, sepsis, cardiology 

and rheumatology, and post-acute COVID-19 syndrome 

or “long COVID.” Clinical strategies for tackling these 

two processes during treatment are crucial for clinicians 

to improve health-related quality of life (HRQoL), 

mitigate disease progression, ineffective therapy, 

deterioration and eventual death of affected persons.77 

Pathogenesis is driven by vitamin C deficiency, which 

aggravates the disease progression while its infusion at a 

high dose might be one way to dysfunctional epigenetic 

regulation.78 Viruses activate NF-b (a protein that 

responds to infection), and vitamin C has been found to 

inhibit it, helping lower inflammation and their ability to 

replicate.79 Emerging evidence suggests that high-dose 

vitamin C therapy may be useful to reduce COVID-19 

symptoms, and it has been found to improve overall 

health outcomes.21 

While expecting a new normal life after COVID-19, 

many millions of people will undoubtedly experience 

morbidity and mortality coupled with broadening of 

health inequalities, and trillions of economic losses 

worldwide.80 As COVID-19 will remain for the 

foreseeable future just like flu, the global challenge is 

how to manage or contain it moving forward.81 This new 

reality includes vaccine with one-year efficacy and 

treating patients suffering from long- or post-COVID 

with a credible therapeutic option like an antioxidant 

(vitamin C infusion at a high dose). Therefore, we 

strongly urged a high-quality high-dose IVC of 7.5 g 

(otherwise known as Pascorbin®, as a brand name), 

which is cost-effective; it can be explored and adopted 

by clinicians in their protocol similar to China’s and 

India’s.20 Moreover, it will enhance HRQoL of patients, 

provide effective therapeutic assistance to physicians, 

and alleviate the mayhem associated with notorious 

processes far before the emergence of the pandemic.82 

Vitamin C infusion at a high dose is expected to be one 

of the challenging therapies to combat inflammation and 

oxidative stress in a critically ill individual. Antioxidant 

balance is of functional relevance during critical illness 

because it is involved in the pathogenesis of multi-organ 

failures. Alteration in endogenous substance levels with 

antioxidant capacity is related to a redox imbalance in 

critically ill patients. Therefore, intake of antioxidant 

vitamins should be carefully monitored to be as close as 

possible to RDA. In immune functions attacking joints, 

L-ascorbic acid could benefit patients with arthritis. An 

increasing body of research indicates that the vitamin 

may help relieve pain, reduce inflammation, protect 

against cartilage damage, development and progression 

caused by rheumatoid arthritis (RA) and osteoarthritis 

(OA). In addition, vitamin C appears to moderate the 

autoimmune response in RA and can prevent a 

worsening of the chronic condition. There is no denial 

that L-ascorbic acid works for everyone whether they 

have arthritis or not. 

Vitamin C can scavenge free radicals, quenching ROS 

and organic peroxides. It impedes oxidation at high 
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concentrations (> 1000 mg/kg) by scavenging oxygen. 

Furthermore, L-ascorbic acid uses direct or cooperative 

regeneration of oxidized vitamin E, carotenoids and 

GSH to quench ROS. 

Aging is a progressive or sequential change in 

anatomical tissues and organs, as well as in their 

structures and functions, which might lead to general 

debility and death. The human body produces 

antioxidants and free radical scavengers in order to 

inhibit or delay cell damage. Reinforcing the antioxidant 

defence system and/or counteracting the effects of 

immoderate ROS and nitrogen species is crucial and may 

reduce the progression of aging and chronic degenerative 

disorders. As a therapeutic approach involving 

antioxidants at the target site of oxidative stress, efficient 

concentrations that translate into clinical indications are 

required to boost confidence among healthcare 

professionals in using them to treat affected individuals. 
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